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Abstract 
Model checking is a technique that has been successfully 
applied for the validation and verification of hardware 
specifications and communication protocols. In mission-
critical systems of NASA and the DoD, various mobile 
devices generate information dynamically, and their state 
changes with time.  Most often, a situation serves as a 
trigger for a new situation.  Therefore, it is necessary to 
extend existing model checking methods and tools in order 
to apply them for the validation and verification of 
situation-aware, mission-critical applications such as DoD 
command and control systems or the Navy’s Total Ship 
Computing Environment. However, there are several 
problems to be overcome before these techniques become 
practical, such as overcoming the state explosion problem 
and adapting the V&V systems and algorithms to this 
application area.  

In this paper, we propose a new technique, founded on 
combining existing techniques in theorem proving and 
model checking to extend the application area of existing 
pure model checking methods. This paper also introduces 
state space reduction methods based on abstraction that 
ameliorate the state explosion problem.  Future distributed 
real-time and embedded system must necessarily be highly 
adaptable, secure, and reliable.  Existing system 
development techniques therefore need to be extended so 
that future systems have the capability to meet these new 
system requirements. 
 
1. Motivation 
 
In mission-critical systems such as DoD Command and 
Control Systems (DCCS) or the Navy’s future Total Ship 
Computing Environment (TSCE), it is foreseen that tens of 
thousands of dynamically configurable systems will 
collaborate to create and process information in a secure 
and adaptable manner.  An emerging new technology that 
could be used to design and build such applications is 
known as Situation-Aware Middleware (SAM).  This 
dynamically configurable middleware will include 
functionality to support information dissemination to users 
in a dependable, yet transparent manner.   The middleware 
must provide an open, standards-compliant, ubiquitous 
communication channel between situation-aware 
applications and its architecture must be lightweight. 
However, since future systems will operate in a dynamic 
and situation changing environment, this increases the 
difficulty of validation and verification of such 
applications.  In general, validation and verification (V&V) 
of current day software systems is very difficult because the 

number of reachable states of such systems is very large.  
Therefore, when applied to these systems, conventional 
tools fail to complete the verification task, and usually 
terminate prematurely after consuming all available system 
resources. Therefore, model checking has rarely been 
applied for the analysis of software specifications even 
though it has been successfully used for the validation and 
verification of device drivers and communication protocols. 
In the past, scalability was achieved by the use of efficient 
representation techniques, such as Binary Decision 
Diagrams (BDDs), that are a canonical representation for 
boolean formulae [1], to symbolically represent the state 
space of a system.  However, this technique has limited 
applicability for software specifications, which include 
variables of richer data types than Boolean.  For instance, 
common data types include enumerations, and integer and 
real types. In this paper, we propose an integrated 
validation and verification system, which we call the 
Extended Validation & Verification System (EVS), which 
is designed to overcomes some of the difficulties in 
applying model checking to situation-aware applications.  
EVS is based on two major ideas:  One idea is to combine 
model checking with theorem proving methods to achieve 
scalability and ease-of-use.  Another is to automatically 
apply property-driven abstraction methods in order to 
derive a simpler specification that will be amenable to 
automated analysis.  

In the next section, we discuss details of the Situation 
Aware Middleware architecture used to develop situation-
aware applications.  In Section 3, we discuss EVS and its 
application to situation-aware applications, followed by the 
conclusion in Section 4. 
 
2. Situation-Aware Middleware Architecture 
 
The need for a conceptual architecture for Situation-Aware 
Middleware based on Reconfigurable Context-Sensitive 
Middleware (RCSM) is proposed in [2]. Ubiquitous 
applications need to be aware of several contexts in order to 
be able to adaptively communicate with each other across 
different network environments, such as mobile ad-hoc 
networks, the Internet, or even mobile phone networks. 
However, existing context-aware techniques often become 
inadequate in these applications where combinations of 
multiple contexts and users’ actions need to be analyzed 
over a period of time.  Situation-awareness in application 
software is considered a desirable feature in order to 
overcome this limitation. In addition to being context-
sensitive, situation-aware applications can respond to both 
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current and historical relationships between specific 
contexts and device-actions.  

Figure 1 shows how all of RCSM’s components are 
layered inside a device. The Object Request Broker of 
RCSM (R-ORB) assumes the availability of reliable 
transport protocols; one R-ORB per device usually suffices.  

 
 

Figure 1. Situation-Aware Middleware Architecture 
 
The number of ADCs (Adaptive Object Containers) 

depends on the number of context-sensitive objects in the 
device. ADCs periodically collect the necessary “raw 
context data” through the R-ORB, which in turn collects  
data from sensors and the operating system. Initially, each 
ADC registers with the R-ORB to express its needs for 
contexts and publishes the corresponding context-sensitive 
interface.  RCSM is called re-configurable because it allows 
addition or deletion of individual ADCs during runtime (to 
manage new or existing context-sensitive application 
objects) without affecting other runtime operations inside 
RCSM.  An example of a SmartClassroom is presented in 
[3].  
 
3. Validation and Verification Framework 
 
In Section 2, the situation-aware middleware architecture, 
which will be the basis for validation and verification, was 
introduced.  In this section, we describe the architecture of 
the EVS, and the aspects of the EVS related to the proposed 
target middleware model with respect to the aspects of 
situation-awareness, real-time, and security.  

During model checking, the state spaces of software 
systems are extremely large.  Therefore, in current 
computing environments, applying model checking to such 
systems is often infeasible. Traditionally, there have been 
two main approaches to solve this problem, one using 
abstraction techniques and the other using partial order 

reduction methods. The idea of applying abstraction was 
first introduced by Clarke et al [4].  In this paper, the 
authors demonstrate how abstract finite state machines may 
be extracted directly from finite state programs, using a 
method similar to those used in abstract interpretation. The 
partial order reduction method consists of constructing a 
reduced state graph.  The full state graph, which may be too 
big to fit in memory, need never be constructed [5]. This 
method is a good fit for asynchronous system verification.  

The system EVS has two main capabilities, one to 
support abstraction mechanisms to reduce the state space 
and the other is to combine theorem proving and model 
checking. As shown in Figure 2, EVS consists of the 
following three sub-components: 

 
3.1 Abstraction Mechanisms Generating Component: 
The inputs to this component include specifications of all 
the situations, in a formal notation called the situation-
aware contract specification language, SA-CSL [6]. 
Conventional model checking and theorem proving tools 
are mainly used to specify and check safety properties. 
Therefore, in order to check that situation-awareness, real-
time, and security Quality of Service (QoS) requirements 
are met by the middleware specified in SA-CSL, there is a 
need to extend their capabilities. Our proposed extensions 
can reduce redundant, unnecessary constraints related to 
situation-awareness, and real-time and security constraints. 
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These abstraction mechanisms make the system EVS 
(discussed in the sequel) to be more effective and efficient. 
 
3.2 Extended Validation and Verification System: 
The two major problems addressed by the system EVS are 
the state explosion problem during model checking and the 
need for user ingenuity and guidance in the case of theorem 
proving.   A two-pronged approach is being used to tackle 
these issues:  (1) Use of the invariant checker Salsa which 
uses a combination of theorem proving and model checking 
techniques to provide scalability and ease-of-use.  (2) 
Automatic property-driven abstraction methods to 
transform a specification expressed in SA-CSL into a 
simpler specification that is amenable to automated 
analysis. Additionally, a compliance checker (CC) proves 
compliance of the specified situation-aware middleware 
and the real-time constraints, the security policies, and QoS 
requirements expected of the middleware.  By ensuring that 
these properties are satisfied and that the middleware 
behaves as specified, we address the issue of integrity of 
the generated middleware. Generally, this approach of 
validation and verification requires formal definitions using 
a Kripke structure to model the situation-aware application. 
Let AP be a set of atomic propositions. A Kripke structure 
over AP is a four tuple K = {AP, S, A, L} where AP is a set 
of atomic propositions that hold in a specific system state, S 
is a finite set of situations, A ( SSA ×⊆ ) is a finite set of 

actions and L ( APS 2→ ) is a labeling function that labels 
each situation with the set of atomic propositions that hold 
for that situation.  
 
3.3 Translator for the Extended Validation and 

Verification System (TEVS): 
The Translator for the Extended Validation and Verification 
System (TEVS) is an interface between the Abstraction 
Mechanism and EVS.  We plan to develop the system EVS 
and its components by reusing existing components and 
tools.  Therefore, the translator will serve as the “glue” 
code that will serve as the interface to this diversity of 
systems and notations. 
 
4. Conclusion 
 
In this paper, we describe the architecture and design of an 
extended V&V system for situation-aware middleware 
architectures for mission-critical applications. The benefits 
of using our framework are: (1) Ease of development of 
situation-awareness applications and (2) Ability to validate 
and verify them by the use of efficient techniques to deal 
with the state space explosion problem by the use of a 
combination of abstraction methods and invariant checking. 
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